

 Navigation

 	
 index

 	
 next |

 	Mokka PHP Mocking Framework 0.0.1 documentation

Mokka PHP Mocking Framework

Index

	Installation
	Composer

	Checking out the latest sources

	Creating Mocks
	Using Mocks

	Mocking
	AnythingArgument

	Stubbing
	Combining Stubs and Mocks

	Throwing Exceptions

	Mokka with PHPUnit

 Copyright 2014, Sebastian Heuer.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mokka PHP Mocking Framework 0.0.1 documentation

Installation

Composer

Simply add belanur/mokka to the composer.json of your project. Use “dev-master” for the latest version:

{
 "require-dev": {
 "belanur/mokka": "dev-master"
 }
}

Checking out the latest sources

Mokka sources are available on GitHub [https://github.com/belanur/mokka].
Simply clone them and checkout the desired branch (master should be fine in most cases):

$ git clone https://github.com/belanur/mokka
Cloning into 'mokka'...
remote: Counting objects: 745, done.
remote: Compressing objects: 100% (107/107), done.
remote: Total 745 (delta 59), reused 0 (delta 0)
Receiving objects: 100% (745/745), 101.76 KiB | 0 bytes/s, done.
Resolving deltas: 100% (395/395), done.
Checking connectivity... done
$

If you want to contribute to Mokka, fork it [https://help.github.com/articles/fork-a-repo]!

 Copyright 2014, Sebastian Heuer.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mokka PHP Mocking Framework 0.0.1 documentation

Creating Mocks

Mocks are created with Mokka::mock() along with the name of the class that you want to mock.
Starting with PHP 5.5 you can use the ‘class’ keyword, which is highly recommended for better
refactoring support.

<?php
$mock = Mokka::mock(SampleClass::class);

If you are using PHP 5.4 (which is the minimum required for Mokka),
you can alternatively pass the class name as a string.

<?php
$mock = Mokka::mock('SampleClass');

The huge drawback of this is that your IDE won’t recognize this as a class name,
meaning your mocks will break if you rename ‘SampleClass’ to something else
with a refactoring tool.

Using Mocks

The created Mock implements all methods of the mocked class (plus a few internal methods needed for mocking and stubbing).
All methods will return NULL when you call them.
See Mocking and Stubbing for information on how to change the behaviour of methods.

 Copyright 2014, Sebastian Heuer.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mokka PHP Mocking Framework 0.0.1 documentation

Mocking

Mocking a method lets you verify that a method was called with the given arguments.

<?php
$mock = Mokka::mock(SampleClass::class);

// Verify sure that the method getBar() gets called once
Mokka::verify($mock)->getBar();

You can use optional Invokation Rules with Mokka::verify():

<?php
// Verify sure that the method getBar() is never called
Mokka::verify($mock, Mokka::never())->getBar();

// Make sure getBar() gets called at least twice
Mokka::verify($mock, Mokka::atLeast(2)->getBar();

// Make sure getBar() gets called exactly three times
Mokka::verify($mock, Mokka::exactly(3)->getBar();

You can add multiple mocks for a single method with different arguments

<?php
// Make sure getBar() gets called once with the argument 'foo' and once with argument 'bar'
Mokka::verify($mock)->getBar('foo');
Mokka::verify($mock)->getBar('bar');

AnythingArgument

There is also a special AnythingArgument, so you don’t have to verify every single argument if it is not relevant for your test.

<?php
// Make sure getBar() gets called with the second argument 'foo'. The first argument can be anything.
Mokka::verify($mock)->getBar(Mokka::anything(), 'foo');

 Copyright 2014, Sebastian Heuer.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mokka PHP Mocking Framework 0.0.1 documentation

Stubbing

Stubbing a method lets you define a return value.
A stubbed method does not have an Invokation Rule (like mocked methods),
so if a stubbed method is not called, no exception is thrown.

<?php
$mock = Mokka::mock(SampleClass::class);

// getFoo() should return 'baz' when called with the argument 'bar'
Mokka::when($mock)->getFoo('bar')->thenReturn('baz');

echo $mock->getFoo(): // => NULL
echo $mock->getFoo('bar'); // => 'baz'

You can also use the special AnythingArgument introduced in Mocking here:

<?php
// getFoo() should always return 'baz'
Mokka::when($mock)->getFoo(Mokka::anything())->thenReturn('baz');

echo $mock->getFoo('foo'): // => 'baz'
echo $mock->getFoo('bar'); // => 'baz'

Combining Stubs and Mocks

You can combine mocks and stubs if you want to verify that a method gets called and also want to set a return value:

<?php
$mock = Mokka::mock(SampleClass::class);

// getFoo() should return 'baz' when called with the argument 'bar'
Mokka::when($mock)->getFoo('bar')->thenReturn('baz');
// also make sure that getFoo() gets called once
Mokka::verify($mock)->getFoo('bar');

echo $mock->getFoo('bar'); // => 'baz'

Throwing Exceptions

A stubbed method can throw an exception instead of returning a value:

<?php
$mock = Mokka::mock(SampleClass::class);
Mokka::when($mock)->getFoo()->thenThrow(new \InvalidArgumentException());

$mock->getBar(); // => throws exception

 Copyright 2014, Sebastian Heuer.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Mokka PHP Mocking Framework 0.0.1 documentation

Mokka with PHPUnit

Mokka comes with the MokkaTestCase class, which provides easy access to mocking functions
and adds support for PHPUnit

<?php
class FooTest extends MokkaTestCase
{
 public function testFoo()
 {
 $mock = $this->mock(SampleClass::class);
 $foo = new Foo($mock);
 }
}

 Copyright 2014, Sebastian Heuer.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Mokka PHP Mocking Framework 0.0.1 documentation

Index

 Copyright 2014, Sebastian Heuer.
 Created using Sphinx 1.3.1.

 _static/down.png

search.html

 Navigation

 		
 index

 		Mokka PHP Mocking Framework 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Sebastian Heuer.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/file.png

